Amit Puri

Studying Online Global Doctor of Business Administration (GDBA)


The impact on software quality due to numerous digital transformation efforts as a part of modernization or cloud adoption programs and the rise of low code/no code platforms viz Custom development


  1. Study factors on adoption of low code/no code platform viz. custom development
  2. the impact of Digital Transformation in modernization or cloud adoption projects on code quality,
  3. and how using Machine learning methods help solve technical debts problem.


ABDC LIST 2019.pdf on iimj.ac.in



The code quality of software applications is usually affected during any new or existing features development, or in various redesign/refactoring efforts to adapt to a new design or counter technical debts. At the same time, the rapid adoption of Microservices-based architecture in the influence of cognitive bias towards its predecessor Services-oriented architecture in any brownfield project could affect the code quality. Even a thoughtful attempt in the paradigm shift to microservices is iterative, massive investment, but code rework in this process too attracts technical debts. Technical debt is inevitable; controlling and reducing the impact is the only alternative. Moreover, owing to several factors

Digital transformation-related factors affecting software quality (WIP)

few organizations are resorting to Low-code/No-code (LCNC) platforms as SaaS to avoid this churn. No-code/low-code platform providers are leveraging microservices and serverless architecture for building their platforms and products. This study attempts to cover both the aspects of code smells in monolith and microservices architectural styles and factors influencing the decision-making of LCNC platform adoption.


A systematic study of code smells from the public datasets acquired from other research work on the monolith codebases and prepare a dataset for Microservices projects with static code analysis tools to get code smells. There are artefacts created in Microservice architecture for Infrastructure as Code (IaC) for CI/CD pipelines and Containerization. These artefacts are also a candidate for code smells, as researched by few. This study factor in Dockerfile, YAML, and other IaC artefacts for code smells. Perform exploratory data analysis of code metrics data from research work in monolith software and data collection from microservices-based code repositories to generate code metrics. These code metrics would undergo systematic data analysis, feature engineering, and machine learning model evaluation to study the patterns, the significance of code metrics, and factors leading to no-code/low-code platforms to provide recommendations over microservices/monoliths.

Initial Findings

Data class, large class and long method are no more significant code smell found in microservices than monoliths, while unnecessary/unutilised abstraction and long statement continue to remain as significant contributors to code smell in microservices. The magic number code smell remains indifferent in monolith and microservices codebases. Deficient encapsulation, cyclic-dependent modularisation and complex method and broken hierarchy are significantly less or none in microservices.

Further academic work

As a part of Doctorate program, study this topic in the context of bigger and more relevant dataset, or create a new one, and study further implications of software maintainability costs vs LCNC platforms, citizen development over custom software development.

References - to be considered in Literature review


ORCID iD icon https://orcid.org/0000-0002-6576-2984

Made with Jekyll using Minimal Light theme by Amit Puri, Noida NCR, India